110 research outputs found

    4-[(E)-2-Ferrocenylethen­yl]-1,8-naphthalic anhydride

    Get PDF
    In the structure of the title compound, [Fe(C5H5)(C19H11O3)], the plane of the substituted ferrocene ring is tilted by 14.17 (6)° with respect to the mean plane through the naphthalene ring system. In the crystal structure, centrosymmetric dimers are formed through π–π inter­actions [centroid–centroid distance = 3.624 (2) Å] between the substituted ferrocene ring and the three fused rings of the naphthalic anhydride unit. Pairs of dimers are held together by further naphthalene–naphthalene π–π interactions [distance between parallel mean planes 3.45 (3) Å]. Each dimer inter­acts with four neighbouring dimers in a herringbone fashion through C—H⋯π inter­actions, so forming a two-dimensional sheet-like structure

    [η5-(Phenyl­ethyn­yl)cyclo­penta­dien­yl](η4-tetra­phenyl­cyclo­butadiene)cobalt(I)

    Get PDF
    In the title compound, [Co(C13H9)(C28H20)], the Co atom is sandwiched between cyclo­penta­dienyl and cyclo­butadienyl rings that are inclined at a dihedral angle of 2.6 (3)°. The four phenyl rings are tilted with respect to the cyclo­butadienyl plane so that the C4Ph4 unit constitutes a four-bladed propeller. The phenyl ring of the phenyl-alkyne substituent is inclined to the cyclo­penta­dienyl ring at an angle of 34.92 (18)°. The crystal structure is stabilized solely by C—H⋯π inter­actions which generate a three-dimensional network

    Direct measurement of room-temperature nondiffusive thermal transport over micron distances in a silicon membrane

    Get PDF
    The >textbook> phonon mean free path of heat carrying phonons in silicon at room temperature is ~40 nm. However, a large contribution to the thermal conductivity comes from low-frequency phonons with much longer mean free paths. We present a simple experiment demonstrating that room-temperature thermal transport in Si significantly deviates from the diffusion model already at micron distances. Absorption of crossed laser pulses in a freestanding silicon membrane sets up a sinusoidal temperature profile that is monitored via diffraction of a probe laser beam. By changing the period of the thermal grating we vary the heat transport distance within the range ~1-10 ¿m. At small distances, we observe a reduction in the effective thermal conductivity indicating a transition from the diffusive to the ballistic transport regime for the low-frequency part of the phonon spectrum. © 2013 American Physical Society.This work was supported as part of the S3TEC Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Basic Energy Sciences under Award No. DE-SC0001299/DE-FG02-09ER46577 (experimental setup and data analysis). This work was also partially supported by projects NANOPOWER, Contract No. 256959; TAILPHOX, Contract No. 233883; NANOFUNCTION, Contract No. 257375; ACPHIN, Contract No. FIS2009-150; and AGAUR, 2009-SGR-150.Peer Reviewe

    Direct Measurement of Room-Temperature Nondiffusive Thermal Transport Over Micron Distances in a Silicon Membrane

    Get PDF
    The “textbook” phonon mean free path of heat carrying phonons in silicon at room temperature is ∼40  nm. However, a large contribution to the thermal conductivity comes from low-frequency phonons with much longer mean free paths. We present a simple experiment demonstrating that room-temperature thermal transport in Si significantly deviates from the diffusion model already at micron distances. Absorption of crossed laser pulses in a freestanding silicon membrane sets up a sinusoidal temperature profile that is monitored via diffraction of a probe laser beam. By changing the period of the thermal grating we vary the heat transport distance within the range ∼1–10  μm. At small distances, we observe a reduction in the effective thermal conductivity indicating a transition from the diffusive to the ballistic transport regime for the low-frequency part of the phonon spectrum

    Dietary Cholesterol Promotes Adipocyte Hypertrophy and Adipose Tissue Inflammation in Visceral, But Not Subcutaneous, Fat in Monkeys

    Get PDF
    Objective—Excessive caloric intake is associated with obesity and adipose tissue dysfunction. However, the role of dietary cholesterol in this process is unknown. The aim of this study was to determine whether increasing dietary cholesterol intake alters adipose tissue cholesterol content, adipocyte size, and endocrine function in nonhuman primates. Approach and Results—Age-matched, male African Green monkeys (n=5 per group) were assigned to one of three diets containing 0.002 (Lo), 0.2 (Med) or 0.4 (Hi) mg cholesterol/Kcal. After 10 weeks of diet feeding, animals were euthanized for adipose tissue, liver, and plasma collection. With increasing dietary cholesterol, free cholesterol (FC) content and adipocyte size increased in a step-wise manner in visceral, but not subcutaneous fat, with a significant association between visceral adipocyte size and FC content (r2=0.298; n=15; p=0.035). In visceral fat, dietary cholesterol intake was associated with: 1) increased pro-inflammatory gene expression and macrophage recruitment, 2) decreased expression of genes involved in cholesterol biosynthesis and lipoprotein uptake, and 3) increased expression of proteins involved in FC efflux. Conclusions—Increasing dietary cholesterol selectively increases visceral fat adipocyte size, FC and macrophage content, and proinflammatory gene expression in nonhuman primates

    Reconstructing phonon mean free path contributions to thermal conductivity using nanoscale membranes

    Get PDF
    Knowledge of the mean free path distribution of heat-carrying phonons is key to understanding phonon-mediated thermal transport. We demonstrate that thermal conductivity measurements of thin membranes spanning a wide thickness range can be used to characterize how bulk thermal conductivity is distributed over phonon mean free paths. A non-contact transient thermal grating technique was used to measure the thermal conductivity of suspended Si membranes ranging from 15 to 1500 nm in thickness. A decrease in the thermal conductivity from 74% to 13% of the bulk value is observed over this thickness range, which is attributed to diffuse phonon boundary scattering. Due to the well-defined relation between the membrane thickness and phonon mean free path suppression, combined with the range and accuracy of the measurements, we can reconstruct the bulk thermal conductivity accumulation vs. phonon mean free path, and compare with theoretical models

    A novel approach to improve cardiac performance: cardiac myosin activators

    Get PDF
    Decreased systolic function is a central factor in the pathogenesis of heart failure, yet there are no safe medical therapies to improve cardiac function in patients. Currently available inotropes, such as dobutamine and milrinone, increase cardiac contractility at the expense of increased intracellular concentrations of calcium and cAMP, contributing to increased heart rate, hypotension, arrhythmias, and mortality. These adverse effects are inextricably linked to their inotropic mechanism of action. A new class of pharmacologic agents, cardiac myosin activators, directly targets the kinetics of the myosin head. In vitro studies have demonstrated that these agents increase the rate of effective myosin cross-bridge formation, increasing the duration and amount of myocyte contraction, and inhibit non-productive consumption of ATP, potentially improving myocyte energy utilization, with no effect on intracellular calcium or cAMP. Animal models have shown that this novel mechanism increases the systolic ejection time, resulting in improved stroke volume, fractional shortening, and hemodynamics with no effect on myocardial oxygen demand, culminating in significant increases in cardiac efficiency. A first-in-human study in healthy volunteers with the lead cardiac myosin activator, CK-1827452, as well as preliminary results from a study in patients with stable chronic heart failure, have extended these findings to humans, demonstrating significant increases in systolic ejection time, fractional shortening, stroke volume, and cardiac output. These studies suggest that cardiac myosin activators offer the promise of a safe and effective treatment for heart failure. A program of clinical studies are being planned to test whether CK-1827452 will fulfill that promise

    How do payday loans affect borrowers?: evidence from the UK market

    Get PDF
    Payday loans are controversial high cost, short-term lending products, banned in many US states. But debates surrounding their benefits to consumers continue. We analyse the effects of payday loans on consumers using a unique dataset including 99% of loans approved in the UK over a two-year period matched to credit files. Using a Regression Discontinuity research design, our results show payday loans provide short-lived liquidity gains and encourage consumers to take on additional credit. However, in the following months, payday loans cause persistent increases in defaults and cause consumers to exceed their bank overdraft limits

    Phonons in Slow Motion: Dispersion Relations in Ultra-Thin Si Membranes

    Full text link
    We report the changes in dispersion relations of hypersonic acoustic phonons in free-standing silicon membranes as thin as \sim 8 nm. We observe a reduction of the phase and group velocities of the fundamental flexural mode by more than one order of magnitude compared to bulk values. The modification of the dispersion relation in nanostructures has important consequences for noise control in nano and micro-electromechanical systems (MEMS/NEMS) as well as opto-mechanical devices.Comment: 5 page
    corecore